
IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

 Vol.12, No 4 Nov 2022

COLLABORATIVE DATA CACHING IN EDGE COMPUTING

BANDI KOMALI, CHINTHAKAYALA KRISHNAVENI, TALLAPAKA DIVYA

GUNREDDY HAARIKA, SUPERVISOR ,N MOWNIKA

Assistant Professor

ANURAG ENGINEERING COLLEGE

AUTONOMOUS

(Affiliated to JNTU-Hyderabad,Aprroved by AICTE-New Delhi)

ANANTHAGIRI (V) (M), SURYAPETA (D), TELANGANA-508206

Abstract: Technology, especially mobile

devices like smartphones, wearables,

tablets, smart cars, and IoT gadgets, has

been expanding at a rapid clip during the

last decade. Congestion and increased

latency are common results of such heavy

usage of the network. Our solution

included edge computing (EC) to deal with

this problem. Edge computing has evolved

as a means to redistribute processing

power away from the cloud and onto edge

computers. Our work is a web-based

programme. By storing frequently used

data on edge devices that are closer to

end-users, collaborative data caching

employing edge computing may boost the

speed of web applications. In addition to a

data-storing cloud server, edge servers are

set up as well. Data stored on edge servers

is automatically deleted after one day to

save memory. The data is sent from the

edge server or the cloud server to the

mobile destination, where it is received,

but the files can only be downloaded using

a key. The created key and extremely

secure data protection and privacy key are

sent to the user's specified email address.

There were a few key safeguards included

in our collaborative data caching project

to prevent unwanted eyes from spying on

or intercepting private information.

I. INTRODUCTION

The use of smartphones and other mobile

devices has skyrocketed in recent years.

Congestion and delays in the network are

common results of the massive amount of

traffic. In response, a new computing

paradigm known as edge computing (EC)

has arisen to shift the focus of computing

resources away from the cloud and onto

decentralised edge servers. Each edge

server receives its power from one or more

hardware devices and is connected to a

nearby base station or access point used by

mobile app users. By leasing processing

power and data storage space from edge

servers, providers of mobile and IoT

applications may guarantee their

consumers experience low latency and

high-quality services. The computational

burden and power consumption of mobile

devices may be lowered by offloading

compute workloads to neighbouring edge

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

 Vol.12, No 4 Nov 2022

servers. More and more information will

be sent from the cloud to users' mobile

devices by way of edge servers as the

number of people using these applications

grows exponentially. In order to minimise

network latency while retrieving app data,

app vendors should cache certain data,

particularly popular ones like viral videos

and postings from Facebook and Twitter. If

data have been cached on the app's edge

servers, users may access them without

having to send a request to the cloud

servers located far away. The app vendor's

data transfer costs under the pay-as-you-go

pricing model may be reduced by caching

data on edge servers, which reduces the

quantity of data moved between the cloud

and the mobile devices. Hardware cache,

such as central processing unit, graphics

processing unit, memory, and discs; and

software cache, such as the world wide

web, database, and so on; are just a few

examples of where data caching methods

have been extensively employed. Data

caching's benefits in lowering bandwidth

use, decreasing network latency, and

decreasing access prices have also been

extensively explored in the network sector.

Different types of network cache have

been studied by academics in recent years.

These types of studies include cache

allocation and replacement techniques,

coded caching, request routing, and

information-theoretic caching.

How Edge computing works?

Fig 1.1 Working of edge computing

In edge computing's collaborative data

caching, many edge devices store and

exchange information. Typically, it goes

like this: Edge devices, which are often

positioned in close proximity to the source

of the data created, gather the data. The

data is processed and cached on the edge

devices, where it may be accessed by local

applications without being sent over the

network. If two edge devices need to

access the same information at the same

time, one might ask the other to get it from

its cache instead of going back to the

source. As a result, there will be less strain

on the network and faster retrieval of data.

If an edge device doesn't have the

necessary information stored locally, it

may send a request to other edge devices

in the network for that information. This

establishes a cooperative caching system

in which edge devices cooperate to speed

up and improve the efficiency of data

retrieval.

By lowering the quantity of data

transported between the cloud and app

users' mobile devices, caching on edge

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

 Vol.12, No 4 Nov 2022

servers may help ease the traffic stress on

the Internet backbone.

One simple way for an app provider to

reduce wait times for their consumers in a

given region is to store copies of the most

frequently requested data on all of the edge

servers in that region. The app provider

must take into account not just the latency

of the data, but also the cost of using edge

servers to cache data, which is based on a

pay-as-you-go pricing model. Data

transmission and transfer over the network

also incurs a cost. As a result, from the

perspective of an app vendor, it is crucial

to find a collaborative data caching

strategy that minimises the total system

cost with limited storage spaces on edge

servers while fulfilling the aforementioned

constraints in the edge computing

environment, such as server capacity

constraint, server coverage constraint, and

server adjacency constraint. Inevitably, as

time progresses, fresh data will replace

older data that has been stored on the edge

servers. A vendor's cached app data and

the storage space it has rented on edge

servers together make up the edge caching

system. There are a lot of positives to this

concept. Cloud computing, which allows

for the creation of a "content centric

network" and a "content delivery

network," is considerably different from

EC. Connectivity between nearby EC

servers deployed at separate base stations

allows for bidirectional data transmission

in the EC environment.

II. LITERATURE SURVEY

Authors: P. Lai, Q. He, M. Abdulrazak, F.

Chen, J. Hosking, J. Grundy, and Y. Yang

In recent years, the world has witnessed a

surge in the number of cloud and mobile

network connected end-devices. According

to Ericsson’s mobility report, it is

predicted that there will be produced a

great challenge for online service

providers in terms of guaranteeing a

reliable and low-latency connection to

end-users, which is one of the key quality-

of-service (QoS) requirements. To tackle

this issue, edge computing came in to

place. In in which computation, storage,

and networking resources are pushed

closer to the edge of the network by

deploying a number of intermediate edge

servers with closer proximity to end-

devices. An optimal deployment must

maximize the number of allocated end-

users and minimize the number of hired

edge servers while ensuring the required

quality of service for end-users. In this

paper, they model the edge user allocation

(EUA) problem as a bin packing problem,

and introduce a novel, optimal approach to

solving the EUA problem based on the

Lexicographic Goal Programming

technique. They have conducted three

series of experiments to evaluate the

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

 Vol.12, No 4 Nov 2022

proposed approach against two

representative baseline approaches, greedy

and random. It is capable of allocating the

most end-users with significantly fewer

edge servers nearly three times less than

the greedy method as the EUA problem

scales up.

Authors: A. Mukhopadhyay, N. Hegde and

M. Lalage Recent years have seen an

explosive growth in Internet traffic,

stemming mainly from the transfer of

multi-media contents, e.g., streaming

videos, movies etc. Such growth in multi-

media traffic has led to the emergence of

content delivery networks (CDNs) and

peer-to-peer systems. Large CDNs usually

consist of a central server, storing an entire

catalogue of contents, and a large number

of edge servers, each storing a small

fraction of these contents in their caches

and serving requests of the stored contents.

In such systems, it is assumed that access

to the central server is expensive.

Therefore, a large portion of the content

requests must be served by the edge

servers that are constrained by their limited

memory and bandwidth capacities. In this

paper, they model these servers as loss

servers and aim at minimizing the number

of requests blocked at these servers. In

such systems, the throughput crucially

depends on how contents are replicated

across servers and how the requests of

specific contents are matched to servers

storing those contents. In this project, they

first formulate the problem of computing

the optimal replication policy which if

combined with the optimal matching

policy maximizes the throughput of the

caching system in the stationary regime. It

is shown that computing the optimal

replication policy for a given system is an

NP-hard problem. They then propose a

simple randomized matching scheme

which avoids the problem of interruption

in service. The dynamics of the caching

system is analysed under the combination

of proposed replication and matching

schemes. We study a limiting regime,

where the number of servers and the

arrival rates of the contents are scaled

proportionally, and show that the proposed

policies achieve asymptotic optimality.

Extensive simulation results are presented

to evaluate the performance of different

policies and study the behaviour of the

caching system under different service

time distributions of the requests.

Authors: L. Chen, S. Zhou, and J. Xu

Many new applications, turning data and

information into actions that create new

capabilities and unprecedented economic

opportunities. Although cloud computing

enables convenient access to a centralized

pool of configurable and powerful

computing resources, it often cannot meet

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

 Vol.12, No 4 Nov 2022

the stringent requirements of latency-

sensitive applications due to the often-

unpredictable network latency and

expensive bandwidth. The growing

amount of distributed data further makes it

impractical or resource�prohibitive to

transport all the data over today’s already

congested backbone networks to the

remote cloud. mobile edge computing

(MEC) has recently emerged as a new

computing paradigm to enable in-situ data

processing at the network edge, in close

proximity to mobile devices and connected

things. Located often just one wireless hop

away from the data source, edge

computing provides a low-latency

offloading infrastructure, and an optimal

site for aggregating, analysing and

distilling bandwidth�hungry data from

end devices. In this project, we study

computation peer offloading in MEC-

enabled small cell networks aiming to

address the aforementioned challenges.

Our goal is to maximize the long-term

system- 4 wide performance (i.e.,

minimizing latency) while taking into

account the limited energy resources

committed by individual SBS owners.

Authors: C. Wang, C. Liang, F. R. Yu, Q.

Chen, and L. Tang However, traditional

wireless cellular networks are becoming

incapable to meet the exponentially

growing demand not only in high data rate

but also in high computational capability.

In order to address the data rate issue, the

heterogeneous network structure was

recently proposed, in which multiple low-

power, local coverage enhancing small

cells are deployed in one macro cell. To

address the spectrum allocation issue, the

work in proposes a graph colouring

method to assign physical resource

blocks(PRBs) to user’s equipment (UEs).

On the other hand, to address the

computational capability issue, mobile

cloud computing (MCC) systems have

been proposed to enable mobile devices to

utilize the powerful computing capability

in the cloud. In order to further reduce the

latency and make the solution more

economical, the fog computing has been

proposed to deploy computing resources

closer to end devices. In this paper, they

presented an ADMM-based decentralized

algorithm for computation offloading,

resource allocation and internet content

caching optimization in heterogeneous

wire-less cellular networks with mobile

edge computing. They formulated the

computation offloading decision, spectrum

resource allocation, MEC computation

resource allocation, and content caching

issues as an optimization problem. Then in

order to tackle this problem in an efficient

way, we presented an ADMM-based

distributed solution, followed by a

discussion about the feasibility and

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

 Vol.12, No 4 Nov 2022

complexity of the algorithm. Finally, the

performance evaluation of the proposed

scheme was presented in comparison with

the centralized solution and several

baseline solutions.

III SYSTEM DESIGN

In this process we define the system

architecture and data for a system to

satisfy specified requirements. Systems

design could be seen as the application of

systems theory to the development of the

product. The design phase helps to

produce the overall design of the software.

The goal of this phase is to figure out the

different modules that can be used for the

given system to achieve its goal with the

greatest possible accuracy and efficiency.

The system design contains details about

each of the modules being used along with

the way they interact with the other

modules and help produce the output. The

output of the design process is a

description of the software architecture.

SYSTEM ARCHITECTURE

Architecture diagram represents mainly

flow of request from the users to database

through servers. In this scenario overall

system is designed in three tiers separately

using three layers. This project was

developed using 3-tier architecture.

 Fig 4.1.1 System Architecture

DATA FLOW DIAGRAM

A data-flow diagram is a way of

representing the flow of a data of a process

or a system. The data flow diagram also

helps us to monitor what data we are

feeding to a given component of the

program and what output data it generates

after processing. The data flow diagram is

just the graphical representation of the

flow of data through the information

system. A flow of events is a sequence of

transactions (or events) performed by the

system.

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

 Vol.12, No 4 Nov 2022

 Fig 4.2.1 Data Flow Diagram

UML DIAGRAMS

UML is a graphical notation used to

visualize, specify, construct and document

the artifact of software intensive. UML is

appropriate for modelling systems ranging

from Enterprise Information Systems to

Distributed Web-based Application and

even to Hard Real-time Embedded

systems. UML effectively starts with

forming a conceptual modelling of the

language is a standard language for

specifying, visualizing, constructing, and

documenting the artifacts of software

systems.

• UML stands for Unified Modelling

Language.

• UML is different from the other common

programming languages such as C++,

Java, COBOL, etc.

• UML is a pictorial language used to

make software blueprints.

• UML can be described as a general-

purpose visual modelling language to

visualize, specify, construct, and document

software system. Although UML is

generally used to model software systems,

it is not limited within this boundary. It is

also used to model non-software systems

as well. For example, the process flow in a

manufacturing unit, etc. UML is not a

programming language but tools can be

used to generate code in various languages

using UML diagrams. UML has a direct

relation with object-oriented analysis and

design. After some standardization, UML

has become an OMG standard. UML

diagrams are not only made for developers

but also for business users, common

people, and anybody interested to

understand the system. The system can be

a software or non-software system. Thus, it

must be clear that UML is not a

development method rather it accompanies

with processes to make it a successful

system.

Use case Diagram:

A use case diagram describes a set of

sequences in which each sequence

indicates the relation with outside things. A

use case involves the interaction of actor

and system. A use case contains an actor.

An actor refers to various people that use

system. The use case diagram is used to

capture the dynamic aspects of a system

and the functional requirements of a

system.

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

 Vol.12, No 4 Nov 2022

 Fig 4.3.1.1 Use Case Diagram

IV IMPLEMENTATION

ONLINE CACHING ALGORITHM

DESIGN

 To solve the CEDC problem optimally,

the complete information about the system

over all the time slots must be known.

However, this cannot be realistically

fulfilled for real-world scenarios. To

practically fulfil the app vendor’s long-

term latency constraint , we need to

convert P1, a non-convex problem, to a

linear and convex problem. To do so, we

propose an Online Collaborative Edge

Data Caching (CEDC-O) algorithm based

on Lyapunov optimization for finding

near-optimal solutions to the CEDC

problem in individual time slots without

future information. The notations adopted

in this section are summarized in Table 2.

TABLE 2: Notations in our Algorithm

Design

Online Collaborative Edge Data

Caching Algorithm: We provide an online

algorithm, named CEDC-O, based on

Lyapunov optimization, to convert the

long-term optimization problem P2 to

optimization problems in individual time

slots. The most significant characteristic of

CEDC-O is that it only requires the

information in the current time slot rather

than the complete information in all the

time slots when solving P2. While trying

to minimize the system cost, the app

vendor also needs to stabilize the system

latency to ensure low-latency data access

for its users. Thus, in this paper, the system

metric to stabilize by CEDC-O is the time

averaged system latency perceived by the

users over the long term. Lyapunov

optimization is typically applied in the

communication and queuing systems. With

the application of Lyapunov optimization,

the problems can be formulated as

problems that optimize the time averages

of certain objectives subject to some-time

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

 Vol.12, No 4 Nov 2022

average constraints, and they can be solved

with a common mathematical framework

that is intimately connected to queuing

theory. Unlike the typical application of

Lyapunov optimization that models the

problem as a queuing network, we define

the accumulated latency in Definition 1 to

stabilize the system latency over time.

Definition 1 (Accumulated Latency).

Accumulated latency σt is the overdue

delay accumulated over t time slots,

calculated as: σ(t + 1) = max{σ(t) +

Lavg(λ t) − L, 0} (15) where Lavg(λ t) =

P m∈M P d∈D θ t m,d·l t P m,d m∈M P

d∈D θ t m,d , and σ(0) = 0 because there is

no latency at the very beginning. Based on

Definition 1, the accumulated latency will

increase if the latency is over L in the

previous time slot. This can be employed

as a penalty to adjust the data caching

strategy to stabilize the system latency

over time as specified by (13). Now, we

can convert the long-term latency

constraint (13) to a new constraint based

on accumulated latency: Lim T→∞ 1 T

X−1 t=0 E[σ(t)] ≤ 0 (16) Given (15), a

Lyapunov function can be defined as

L(σ(t)) , 1 2 σ 2 (t). It indicates the system.

stability measured by its accumulated

latency L(σ(t)). Here, the Lyapunov drift

∆(σ(t)) is applied in each time slot to

enhance the system stability: ∆(σ(t)) =

E[L(t + 1) − L(t)|σ(t)] = 1 2 E[σ 2 (t + 1) −

σ 2 (t)|σ(t)] = 1 2 E[(Lavg(λ t) − L) 2

|σ(t)] + σ(t) E[Lavg(λ t) − L|σ(t)] ≤ Q +

σ(t) E[Lavg(λ t) − L|σ(t)] (17) where Q =

1 2 L 2 because of Lavg(λ t) ≥ 0. As we

obtain the upper bound of the Lyapunov

drift function, we introduce the penalty in

our CEDC-O algorithm based on the total

cost objective (12). We denote γ as a

positive parameter in Lyapunov

optimization for adjusting the trade-off

between the system cost C(λ t) and the

number of time slots needed to converge

the time-averaged latency back to L when

(13) is violated. Here, we introduce the

Lyapunov drift-plus-penalty function

DP(t), defined as: DP(t) = ∆(σ(t)) + γ ·

E[C(λ t)|σ(t)] (18) In each time slot, the

data caching strategy is formulated to

minimize the total cost C(λ t) and to keep

the system stable, and we can get the upper

bound of this function by: DP(t) ≤ Q + σ(t)

E[Lavg(λ t) − L|σ(t)] + γ · E[C(λ t)|σ(t)]

(19) The pseudocode of the CEDC-O

algorithm is presented in Algorithm 1. In

each time slot, the data caching strategy is

formulated by finding the optimal solution

to P2: P2 : min(Q + σ(t)(Lavg(λ t) − L) +

γ · C(λ t)) s.t. : (1), (3), (6), (4), (15)

V RESULTS

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

 Vol.12, No 4 Nov 2022

 Fig 8.1 Home Page

 Fig 8.2 Mobile Source Home Page

 Fig 8.25 Download File

 Fig 8.26 Received file

VI CONCLUSION

In this project, we are able to build a web

application. It is a promising approach to

improving the performance of distributed

systems. By leveraging the resources of

edge devices, such as smartphones and

routers, data can be cached closer to end-

users, reducing network latency and

improving response times. It also provides

security and privacy to the data by

generating a confidential key. So, in that

case data is secure and available only for

the user it sends. This application helps

user with privacy to their data and

consumption less time and less cost. In this

Project, we studied the collaborative edge

data caching (CEDC) problem. We first

identified the major challenges and

proposed a comprehensive cost model for

this problem, where system cost is

composed of data caching cost, data

migration cost and QoS penalty. We also

proved the N Completeness of the CEDC

problem. We proposed CEDC-O, an online

algorithm with provable performance

guarantee, and evaluated its performance

with extensive simulations. This research

has established the foundation for the

CEDC problem and opened up a number

of future research directions. In our future

work, we will consider dynamics on

available edge server caches, user mobility

and security policies.

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

 Vol.12, No 4 Nov 2022

REFERENCES

[1] P. Lai, Q. He, M. Abdulrazak, F. Chen,

J. Hosking, J. Grundy, and Y. Yang,

―Optimal edge user allocation in edge

computing with variable sized vector bin

packing,‖ in International Conference on

Service-Oriented Computing, 2018, pp.

230–245.

[2] T. X. Tran, M.-P. Hosseini, and D.

Pompili, ―Mobile edge computing: Recent

efforts and five key research directions,‖

IEEE COMSOC MMTC Commun.-

Frontiers, vol. 12, no. 4, pp. 29–33, 2017.

[3] L. Chen, S. Zhou, and J. Xu,

―Computation peer offloading for energy-

constrained mobile edge computing in

small-cell networks,‖ IEEE/ACM

Transactions on Networking, vol. 26, no.

4, pp. 1619–1632, 2018.

[4] C. Wang, C. Liang, F. R. Yu, Q. Chen,

and L. Tang, ―Computation offloading and

resource allocation in wireless cellular

networks with mobile edge computing,‖

IEEE Transactions on Wireless

Communications, vol. 16, no. 8, pp. 4924–

4938, 2017.

[5] A. Mukhopadhyay, N. Hegde and M.

Lalage, "Optimal content replication and

request matching in large caching

systems", Proc. IEEE Conference

Computer Communication., pp. 288-296,

2018.

[6] C. You, K. Huang, H. Chae, and B.-H.

Kim, ―Energy-efficient resource allocation

for mobile-edge computation offloading,‖

IEEE Transactions on Wireless

Communications, vol. 16, no. 3, pp. 1397–

1411, 2017.

[7] X. Chen, L. Jiao, W. Li, and X. Fu,

―Efficient multi-user computation

offloading for mobile-edge cloud

computing,‖ IEEE/ACM Transactions on

Networking, vol. 24, no. 5, pp. 2795–2808,

2016.

 [8] Q. He, G. Cui, X. Zhang, F. Chen, S.

Deng, H. Jin, Y. Li, and Y. Yang, ―A game-

theoretical approach for user allocation in

edge computing environment,‖ IEEE

Transactions on Parallel and Distributed

Systems, 2019.

[9] P. Stenstrom, ―A survey of cache

coherence schemes for multiprocessors,‖

Computer, vol. 23, no. 6, pp. 12–24, 1990.

[10] J. D. Owens, D. Luebke, N. Govinda

Raju, M. Harris, J. Kruger, ¨ A. E. Lefohn,

and T. J. Purcell, ―A survey of general-

purpose computation on graphics

hardware,‖ in Computer graphics forum,

vol. 26, no. 1. Wiley Online Library, 2007,

pp. 80–113.

[11] B. Jacob, S. Ng, and D. Wang,

Memory systems: cache, DRAM, disk.

Morgan Kaufmann, 2010.

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

 Vol.12, No 4 Nov 2022

[12] A. J. Smith, ―Disk cache—miss ratio

analysis and design considerations,‖ ACM

Transactions on Computer Systems

(TOCS), vol. 3, no. 3, pp. 161–203, 1985.

[13] S. Polding and L. Bosz ¨ ormenyi, ―A

survey of web cache replacement

strategies,‖ ACM Computing Surveys

(CSUR), vol. 35, no. 4, pp. 374–398, 2003.

[14] K. Elhardt and R. Bayer, ―A database

cache for high performance and fast restart

in database systems,‖ ACM Transactions

on Database Systems (TODS), vol. 9, no.

4, pp. 503– 525, 1984.

[15] A. Mukhopadhyay, N. Hegde, and M.

Lalage, ―Optimal content replication and

request matching in large caching

systems,‖ in IEEE INFOCOM 2018-IEEE

Conference on Computer

Communications, 2018, pp. 288–296.

